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Theory of a reconstructive structural transformation in capsids of icosahedral viruses
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A theory of a reconstructive structural transformation in icosahedral capsid shells is developed for a whole
family of virulent human viruses. It is shown that the reversible rearrangement of proteins during the virus
maturation transformation is driven by the variation in the wave number / associated with the protein density
distribution function. The collective displacement field of protein centers from their positions in the initial
(procapsid) and the final (capsid) two-dimensional icosahderal structures is derived. The amplitude of the
displacement field is shown to be small and it minimizes the calculated free energy of the transformation. The
theory allows us to propose a continuous thermodynamical mechanism of the reconstructive procapsid-to-
capsid transformation. In the frame of the density-wave approach, we also propose to take an equivalent
plane-wave vector as a common structural feature for different icosahedral capsid shells formed by the same
proteins. Using these characteristics, we explain the relation between the radii of the procapsid and capsid
shells and generalize it to the case of the viral capsid polymorphism.
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I. INTRODUCTION

Viruses are nanometer-size highly ordered systems, which
combine in their life cycle specific properties encoded in
their genome with general physical mechanisms of self-
organization. Viral genetic material is protected from exter-
nal chemical aggressions by a shell (capsid) made of many
copies of identical proteins [1]. In addition to the protective
function, the viral capsid plays an important role in the trans-
mission of viral genome to an appropriate host cell, i.e., in
the way that the virus infects the cell. Extensive studies by
means of x-ray diffraction and electron microscopy revealed
that the protein organization in almost all small viruses with
spherical topology is consistent with the point symmetry of
the icosahedron rotational group I [2]. Consequently, the to-
tal number of proteins constituting capsid shells is always
equal to |G|N, where |G|=60 is the number of elements in
the I group and N is the number of different protein environ-
ments in the capsid.

During the last decade, a rapid development of cryoelec-
tron microscopy [3] and tomography [4] brought qualita-
tively new information about the protein distribution in viral
capsids and stimulated a whole series of theoretical works on
capsid structure and mechanical properties [5], as well as on
thermodynamics [6] and physical mechanisms of the protein
shell self-assembly [7]. Advances in experimental techniques
have revealed a growing number of capsid structures [8,9],
which deviate from the well-known geometrical model of
Caspar and Klug (CK) [2]. The CK model considered as a
basis of structural virology accounts for the existence of dif-
ferent protein environments for identical proteins by impos-
ing geometrical selection rules on the number N of environ-
ments and on their type. According to the CK model N=h?
+k®+hk, where h and k are non-negative integers, and, in
addition, all capsids should be constituted by protein pentam-
ers and hexamers. Both conditions are not always satisfied
experimentally [8,9].
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Recently, we have proposed the density-wave theory of
capsid structure and self-assembly [ 10] for small viruses with
spherical topology and icosahedral symmetry based on a
generalization of the Landau theory of crystallization. It de-
scribes, in a uniform way, both the structures satisfying the
CK model and those violating it. The theory deals with the
probability density p of protein distribution in the procapsid
structure presented as p=py+Ap. Here p, is an isotropic
density in the solution and Ap corresponds to the density
deviation induced by the ordering. The critical part Ap,
of the density is constituted by a system of spherical
density waves with the same wave number I: Ap,(6, )
=3"=" A;Y (0, ¢). The spherical harmonics Y, span one
irreducible representation (IR) of the SO(3) symmetry group
of the disordered state, / is the IR number, and A;,, are the
amplitudes of the corresponding spherical harmonics. The
protein centers in the capsid structure are associated with the
positions of maxima of the Ap, function. For small icosahe-
dral viruses (with [=43), the critical part of the density is
reduced to a single irreducible icosahedral function f;(6, @),
which has no fitting parameter: Ap;(6, ¢)=B,f,(0, ¢), where
B, are the amplitudes.

In [10], we focused only on the first step of the self-
assembly process, which is usually called a procapsid forma-
tion [1]. However, in a large number of viruses, the step of a
procapsid formation is followed by a maturation phenom-
enon. The latter process is accompanied by collective rear-
rangements of protein positions, resulting in a reconstructive
structural transformation of the capsid. It also involves dif-
ferent specific (and often irreversible) biochemical features
[11] such as large conformational changes in proteins, pro-
tein cleavage, and elastic instabilities of the global shape [5].
In contrast to the procapsid formation, which displays uni-
versal properties, biochemical changes during maturation are
not the same for different virus families. The results of [12]
have shed a new light on this problem. It was proved that in
the Flavivirus family (Dengue virus, West Nile virus, Yellow
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Fever virus, etc.) immature capsids undergo first reversible
structural changes that then render them accessible to irre-
versible protein cleavage. Thus, in this family the structural
transformation of the procapsid shell into the capsid one is a
reversible physical process. This fact leads to two prelimi-
nary physical conclusions. On one hand, the reversibility of
the process suggests that the phenomenon can be understood
in rather simple terms of the theory of phase transitions. But
on the other hand, due to the absence of a simple group-
subgroup relationship between the procapsid and capsid
structures, the corresponding transition is reconstructive.
Generally, reconstructive solid-solid transformations have no
simple and universal description. However, as it is shown in
the following sections, the reconstructive phase transition in
the capsids of the Flavivirus family [i.e., the particular class
of icosahedral two-dimensional (2D) nanocrystals with
spherical topology] can be described by a simple collective
displacement field of all proteins with small amplitude mini-
mizing the global free energy of the system. From a physical
point of view, a continuous thermodynamical description of a
reconstructive transformation in a capsid nanocrystal is a
new and unconventional development of the theory of phase
transitions. In structural virology, it helps to understand the
mechanisms of virus maturation.

The main aim of the present work is to extend further the
Landau theory of phase transitions in order to give a simple
and clear explanation of the reversible reconstructive struc-
tural transformation in the Flavivirus family. In the frame of
the density-wave approach, we show that the transformation
is associated with the variation in the protein density distri-
bution wave number / and is intimately related to the pro-
capsid self-assembly transition preceding the reconstructive
procapsid-to-capsid transition.

The paper is organized as follows. In Sec. II the Landau
free energy of the procapsid-to-capsid phase transformation
in Dengue virus is derived together with the collective dis-
placement field of all proteins constituting the shell. In Sec.
IIT we discuss capsid radius variation during the maturation
phase transformation in terms of protein density waves. Pos-
sible polymorphism of viral capsid forms is also discussed.
Section IV is devoted to the conclusions.

II. STRUCTURAL TRANSFORMATION IN FLAVIVIRUSES

The choice of the Flavivirus family is motivated by sev-
eral reasons. On one hand, though the virulent human viruses
belonging to this family are extremely important for biology,
the structural data on their organization were acquired only
quite recently [9]. On the other hand, the structure of mature
Flaviviruses violates the CK geometrical model but is per-
fectly consistent with the predictions of the density-wave
theory [10].

A constructive comparison of the procapsid and capsid
structures of Flaviviruses became possible due to an impor-
tant result obtained in [10]: there exist qualitatively different
structures induced by irreducible icosahedral functions
f1(0, ¢) with different [ but with the same number N of in-
equivalent protein positions. It is, in particular, the case of
capsids constituted by 180 proteins located in N=3 different
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FIG. 1. (Color online) Procapsid (a) and capsid (b) structures of
the Dengue virus. Protein density distribution induced by the irre-
ducible icosahedral function f; with (a) /=27 and (b) =25 (left
panel). Experimental viral structures [14] (right panel).

environments. The positions of protein centers induced by
the f,; [left panel in Fig. 1(a)] form local pentamers and
hexamers and thus satisfy the CK model, while the positions
generated by the fs [left panel in Fig. 1(b)] violate the CK
rules. To very good accuracy, they correspond to the experi-
mental protein distributions in the Dengue virus procapsid
and capsid [9,12,14] presented in the right panel of Figs. 1(a)
and 1(b), respectively. To facilitate the comparison of the
experimental structures with the protein positions induced by
the density functions, we show in the left panel of Fig. 1 the
so-called asymmetric protein unit (triangle connecting one
fivefold axis with two neighboring threefold axes). This is a
standard notation in structural virology, which shows differ-
ent protein environments, existing in a given capsid struc-
ture. One can easily compare the positions of the density
function maxima, with the protein center positions. It is evi-
dent that the density functions presented in Fig. 1 (left panel)
have three 60-fold orbits of maxima. Correspondingly, three
different maxima (one representative per orbit) find them-
selves in the asymmetric protein unit. One of the orbits is
situated around fivefold axes of the icosahedral symmetry.
Proteins situated in the corresponding positions are shown in
red in the right panel of Fig. 1. Two other orbits (proteins in
the corresponding positions are shown in blue and green)
form in the procapsid structure [Fig. 1(a)] nearly regular
hexagons around icosahedral threefold axes. In the capsid
structure [Fig. 1(b)], it is also very easy to make one-to-one
correspondence between the typical rhombus of maxima po-
sitions around the icosahedral twofold axis (left panel) and
the corresponding thombus with the herring-bone protein ar-
rangement (right panel).

For the following theory of phase transition between these
two structures, it is important to note that the point symmetry
of the protein shell remains icosahedral in all intermediate
states of the reconstructive structural transformation. This
fact was revealed recently [12] by the tracing of viral par-
ticles in the host cell secretory pathway and by in vitro ex-
periments. Conservation of the icosahedral symmetry during
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the Flavivirus structural transformation means that the pro-
tein density function in the intermediate states is a combina-
tion of f,; and f,5 with the relative weight of these two
icosahedral functions being a thermodynamical variable de-
pendent on external parameters such as temperature, concen-
tration, and pH value. Then, the stability of the initial, final,
and all intermediate structures is described by the same free
energy F(B,7,B,s). Here the amplitudes By; and B,s play the
role of order parameters responsible for both the procapsid
formation and the reconstructive procapsid-to-capsid transi-
tion in the considered virus family. Note that to obtain the
unified description of two processes and the continuous ther-
modynamical description of the considered reconstructive
solid-solid transformation, one has to choose the liquid state
as a latent parent phase for both the capsid and the procapsid
crystalline structures. Until now the liquid state was consid-
ered in the theory of phase transitions to be not informative
for such kinds of problems because it was not clear how to
relate its characteristics to crystalline (discrete) positions.
The density-wave approach gives the answer to this question
and makes possible further development of the theory of
phase transitions in nanostructures (which is more general
than the theory of virus maturation considered here).

The free-energy expansion describing both the assembly
and the maturation processes in the Flavivirus family can be
taken in a standard form [13], containing successive invari-
ant terms F=Fy+F,+F3+F4+.... Due to the asymmetry of
capsid proteins, the protein density function Ap,(6, ¢) con-
tains the odd wave numbers / only and, consequently, the
third-order term F3 is identically zero. The second-order
term F, is expressed as an invariant quadratic form of the
amplitudes A, ,,. For the description of transitions between
the isotropic and different icosahedral states, it can be sim-
plified and expressed in terms of the icosahedral function
amplitudes B; only

m=[

Fy=2 a(l,R;T,c) 2 Ap,A;, =2 a@l.R;T,c)B7, (1)

! m=-I !

where «(l,R;T,c) or a(l,R;T,c) are temperature- and
composition-dependent coefficients of the Landau theory.
The a(l,R;T,c) phenomenological coefficient in the
second-order term (1) is minimal with respect to the discrete
wave number / and goes through zero at the self-assembly
transition from the isotropic phase [13] [curve 2 in Fig. 2(a)].
Further variation in external parameters can induce a small
continuous shift of the @(/,R;T,c) minimum position as a
function of . In icosahedral shells, this process takes place
only for some families of viruses. In certain viruses, a shift
of the a(l,R;T,c) minimum can induce a bifurcation of the
density function maxima, thus, making this thermodynamical
process improbable. For example, for /=27, the protein den-
sity function has 180 maxima, while for /=31 (which is the
next wave-number value allowed by the selection rules [10])
the number of density maxima becomes 240. On the con-
trary, for viruses with N=3, the continuous variation in the @
minimum position between /=27 and /=25 [curve 3 in Fig.
2(a)] does not change the number of the density function
maxima and leads to the correlated collective shift of the 180
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FIG. 2. Dependence of the @(I,R;T,c) phenomenological coef-
ficient in the second-order term [Eq. (1)] of the free energy on the
wave number . The a(l,R;T,c) value is given in arbitrary units. In
the vicinity of the capsid self-assembly and reconstructive
procapsid-to-capsid transition (a): in the isotropic state (curve 1), in
the self-assembly transition point (curve 2), and after the structure
reconstruction (curve 3). For the capsid shells, which show struc-
tural polymorphism (b).

protein center positions. The corresponding collective dis-
placement field (Fig. 3) is a continuous function depending
on external thermodynamical parameters. The displacement
field preserves the icosahedral symmetry of the shell in all
intermediate states (Fig. 4) of the process and its amplitude
minimizes the Landau free energy with the second-order
term given by Eq. (1). The procapsid self-assembly transition
is driven by the B,; order parameter. Its relative weight with
respect to that of B,5 is maximal in the procapsid state [Fig.
4(a)], then decreases with the shift of the @(l,R;T,c) mini-
mum position during the reconstructive structural transfor-
mation process [Figs. 4(b)-4(e)], and finally locks in the
capsid structure characterized by the maximal contribution of
Bss to the capsid density function [Fig. 4(f)].

Let us also show that the reconstructive transformation in
the considered system can take place continuously, without
jumps of By; and B,s5 order parameters. Symmetry analysis

FIG. 3. (Color online) Calculated collective displacement field
of protein centers in viruses of the Flavivirus family during the
reconstructive procapsid-to-capsid transformation. The positions in
the initial procapsid structure are given by circles. The directions
and the amplitudes of protein displacements to their final positions
in the capsid structure are given by arrows.
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FIG. 4. (Color online) Variation (a)—(f) in the protein density
function in intermediate states of the reconstructive procapsid-to-
capsid transformation in Flavivirus family. Density function is cho-
sen in the normalized form: Ap;=by;f27+basfr5 wWith byr+bys=1.
Density distributions with the following b,s5 values are presented:
(a) 0; (b) 0.2; (c) 0.4; (d) 0.6; (e) 0.8; and (f) 1.

demonstrates that there exist two invariant coupling terms
between B,; and B,s in the fourth degree. The total free
energy of the system has then the form

Fio1=Fyy(By;) + Fy5(Bss) + Bi(T,¢)B3;Bas + Ba(T,c)By;B3s.
(2)

Here the first term is the free-energy part dependent on the
B,; order parameter only, the second term stands for the
contribution of the B,s, while the two last terms, expressing
the coupling of the order parameters B,(T,c) and B,(T,c),
are the temperature- and concentration-dependent coupling
constants. The equations of state of the system are then given
by

5Fmr/&Bz7 = 0, J Fl()t/ﬁBZS = O (3)

The solutions of the equations of state [Eq. (3)] determine
the equilibrium dependence of B,; and B,5 on temperature,
concentration, and pH values. Minimization of free energy
(2) with respect to both order parameters shows that a non-
zero value of B,; induces a nonzero value of B,s and vice
versa. This fact makes possible a continuous thermodynami-
cal path from the procapsid state to the capsid one.

The amplitudes of protein center displacements obtained
in the present work by the free-energy minimization are
much smaller than those induced by all previously proposed
empirical mechanisms [9,12]. Figure 5 shows the evolution
of N=3 protein positions, corresponding to the collective
displacement field (Fig. 3) between procapsid [Fig. 5(a)] and
capsid [Fig. 5(b)] structures. The result is presented in usual
for the structural virology terms of an asymmetric protein
unit. Three different positions of identical proteins are given
in red, blue, and green. It is easy to follow the evolution of
each protein position during the procapsid-to-capsid struc-
tural transformation. We would like to stress, however, that
in addition to the protein center displacements, the protein
molecules in the considered viral capsid participate in the
complex rotational motion in the direction perpendicular to
the capsid surface (Fig. 4(B) in [12]). This motion leads to
the changes in the apparent projection of the protein mol-

FIG. 5. (Color online) Evolution of protein positions in the
asymmetric protein unit of the Flavivirus corresponding to the col-
lective displacement field (Fig. 3) between (a) procapsid and (b)
capsid. The asymmetric unit is presented by the triangle connecting
one fivefold axis of the structure with two neighboring threefold
axes. Three different positions of identical proteins are given (to
compare with Fig. 3 and with [9,12]). Protein positions remain in
the vicinity of the same symmetry axes both in the procapsid and
the capsid structures.

ecule on the capsid surface. As for the protein center posi-
tions, it is easy to see by a direct comparison that the evolu-
tion obtained in the present work is quite different with
respect to the mechanisms of [9,12]. The simplest way to do
it is to follow the evolution of protein positions given by the
same color in Figs. 5(a) and 5(b) [and in Figs. 1(a) and 1(b)]
and then to compare it with the corresponding evolution pre-
sented in [9,12,14]. Namely, in Fig. 5, the pentamers, which
are already formed in the procapsid, are not destroyed during
the transformation. The corresponding proteins (shown in red
in Fig. 5) located in the vicinity of the fivefold axis of the
protein shell are shifted very slightly. Their positions remain
in the very vicinity of the fivefold axes. Two other types of
protein positions (blue and green in Fig. 5) also remain in the
vicinity of the same symmetry axes both in the procapsid and
the capsid structures though the displacements of these posi-
tions are more important than those of the “pentameric”
ones. In their turn, the mechanisms proposed in both [9,12]
show important exchanges between the protein positions
situated around fivefold, threefold, and twofold axes and im-
ply large displacements of protein centers.

Finally, note that in all types of phase transformations,
smaller displacements of particle centers correspond usually
to smaller energy costs. This fact makes the mechanisms
involving small displacement fields much more probable
with respect to those with larger displacements. In the
present state of the experimental technique, it is difficult to
trace the path of an individual protein on the capsid surface
during the maturation transformation. Thus, the protein paths
predicted by our model based on the collective displacement
field with the small amplitude and minimizing the global free
energy of the system become important for further biological
applications (e.g., for the relation between the protein path
and the infectivity acquired by the capsid after the matura-
tion transition).

III. DISCUSSION

The thermodynamics of capsid self-assembly and matura-
tion processes depends not only on the characteristic wave
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number [/ but also on the capsid radius R. However, this
variable is not completely independent of /. The wave num-
ber [ determines the number of proteins in the shell [10],
while the capsid radius R is related to the protein size and
their packing. In particular, in the Dengue virus, the protein
packing in the capsid state (which looks locally like a hex-
agonal close packing) is more dense than the packing in the
procapsid state. Correspondingly, the capsid shell radius de-
creases through the procapsid-to-capsid reconstructive phase
transition. Different packings result in qualitatively different
structures (see Fig. 1). Nevertheless, it is possible to find an
average common feature for different packings of the same
proteins using the well-known relations between the spheri-
cal and the plane waves. Note that local packing is not
strongly dependent on the capsid curvature and can be thus
considered in the plane-wave approximation. Spherical
waves on the shell surface are well approximated by the
plane waves in the case R>\, where \ is the plane wave-
length. For the waves with high [ participating in the icosa-
hedral protein density function Ap,(6, ¢), this approximation
is reasonable. More rigorously, to attain the plane-wave limit
in the equations of spherical dynamics, it is necessary to
replace the ratio //R by the magnitude ¢ of an effective wave
vector ¢ and then to tend R to infinity [15].

In the frame of the unified density-wave mechanism of
the procapsid self-assembly and the reconstructive
procapsid-to-capsid transformation in the Flavivirus family,
the ratio I/R can vary only slightly around some average
value determined by the individual protein size. The follow-
ing estimations confirm the theoretical arguments. Namely,
for the Dengue virus procapsid, /=27 and the diameter is
=60 nm [12], i.e., I/R=0.90 nm™'. For the capsid, /=25
and the diameter is =53 nm [12], which gives [/R
=0.94 nm~'. Along this reconstructive transition related to
the [ change, the average wave vector length g=I/R varies
only slightly (less than 4.5%), while the capsid radius R un-
dergoes an apparent jump of more than 13%. Thus, we pro-
pose to take the average plane-wave vector length g=I/R as
a common feature for all capsids constituted by the same
proteins. Furthermore, in the isotropic protein solution before
the assembly transition, the density fluctuations with maxi-
mal amplitude should also correspond to wave vectors with
the length ¢g=1/R. This remark suggests a new type of com-
parative experiments: the results of a simple x-ray scattering
on the viral coat protein solutions can be compared with the
small-angle x-ray scattering on the processed capsids or with
the capsid images reconstructed from the cryoelectron mi-
croscopy.

As an additional remark, let us stress that the density-
wave theory can also explain the polymorphism of viral
capsid forms. Frequently observed during in vitro assembly
of capsids formed by mutant proteins [16] or in viruslike
particles [17], the polymorphism consists in the formation of
different icosahedral shells by the same proteins. The
a(l,R;T,c) phenomenological coefficient in Eq. (1) has in
this case two (or sometimes more) minima [see Fig. 2(b)]
situated at different permitted values of the wave number /
and separated by rather high-energy barriers. Variation in the
assembly conditions chooses the minimum for which the
density function goes through zero and, consequently, the
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number of proteins and their type of organization in the shell.
For the Hepatitis B virus (HBV) capsid proteins [18], two
possible forms with N=4 and N=3 correspond to the minima
with /=31 and /=27, respectively. For mutant Cowpea Chlo-
rotic Mottle Virus (CCMYV) proteins [16], the shells are as-
sociated with [=15, N=1, [=21, N=2, and [=27, N=3
values. In the viruslike particles [17], these values are [
=21, N=2 and [=27, N=3. As in the theory of reconstruc-
tive procapsid-to-capsid structural transition, the difference
in capsid radii in the case of capsid forms polymorphism can
be understood in terms of the average g=I/R value. For the
HBY, the shell diameters D,=30 nm and D;=26 nm corre-
spond to ¢3;=2.067 nm~' and ¢,;=2.077 nm™!, respec-
tively, with the difference making less than 0.5%. The diam-
eters D,=25 nm and D;=18 nm of the CCMV shells also
lead to a very small g difference (less than 0.8%). For the
viruslike particles [17], the diameters D,=21.5 nm and D;
=273 nm correspond to ¢,;=1.954 nm™!' and g,
=1.978 nm™, respectively, thus, confirming the small differ-
ence in g=I/R between polymorphic states.

IV. CONCLUSION

The theory of the reconstructive structural transformation
between the icosahedral 2D nanocrystals with spherical to-
pology developed in the present work allows to describe in a
simple way structural changes during the maturation process
from the procapsid to the capsid state in a whole family of
viruses. The example of Flavivirus was chosen because of its
complexity for a conventional structural description in terms
of the CK geometrical model and its high biological rel-
evance. We based the proposed approach on the Landau
density-wave theory and on the choice of the liquid state as a
common latent parent phase for both the procapsid and the
capsid icosahedral structures. This unconventional approach
to the classical theory of phase transitions allowed us to de-
scribe the reconstructive procapsid-to-capsid transition in a
continuous way. In the frame of our theory, the reconstruc-
tive procapsid-to-capsid transformation in the Flavivirus
family was successfully related to the thermodynamical
variation in the equilibrium wave number / of the protein
density function from /=27 to /=25. The collective displace-
ment field of protein centers from their positions in the pro-
capsid structure to their final positions in the capsid structure
was calculated. Its amplitude related to the order parameter
of the procapsid-to-capsid transformation is a small param-
eter and minimizes the free energy of the system. The dis-
placement field obtained suggests a new structural mecha-
nism of the transition. The resulting amplitudes of protein
center displacements are much smaller than the displacement
amplitudes in all previously proposed mechanisms. We pro-
posed also to take the average plane vector g=I/R as a uni-
versal feature for different capsid shells constituted by the
same proteins. The equivalent average plane-wave vector al-
lowed us to compare the capsid shell radii before and after
the maturation transition in the Flavivirus family and to re-
late the radii of different polymorphic states of mutant vi-
ruses and viruslike particles.
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